This page describes features extending the AI Gateway, which provides a unified API for accessing multiple AI providers. To learn more, see AI Gateway.
Quick Start
Generate structured JSON responses with guaranteed schema compliance.Configuration Options
JSON Schema Mode
| Parameter | Type | Description | 
|---|---|---|
| type | "json_schema" | Enable schema validation | 
| json_schema.name | string | Schema name/identifier | 
| json_schema.schema | object | JSON Schema definition | 
Simple JSON Mode
| Parameter | Type | Description | 
|---|---|---|
| type | "json_object" | Basic JSON output (no schema) | 
Schema Examples
Simple Data Extraction
Complex Nested Structure
Code examples
Common Use Cases
Data Extraction
Content Analysis
Form Generation
Advanced Patterns
Conditional Schemas
Dynamic Schema Generation
Validation and Error Handling
Best Practices
Schema design:- Use descriptive field names
- Add field descriptions for better results
- Mark essential fields as required
- Use appropriate data types and constraints
Troubleshooting
**Schema validation fails- Simplify complex nested structures
- Ensure required fields are clearly specified
- Check field types match expected data
- Add field descriptions for clarity
- Use more specific prompts
- Add examples in the prompt
- Increase model temperature for creativity
- Switch to a more capable model
- Reduce schema complexity
- Cache schema definitions
- Use appropriate models for task complexity
- Consider breaking large schemas into smaller ones
Limitations
| Limitation | Impact | Workaround | 
|---|---|---|
| Schema complexity | Large schemas may fail | Break into smaller schemas | 
| Model support | Not all models support schemas | Use JSON mode as fallback | 
| Nested depth | Deep nesting may cause issues | Flatten structures when possible | 
| Array validation | Complex array items challenging | Simplify item schemas | 
| Performance cost | Schema validation adds latency | Cache and optimize schemas |