curl --request POST \
--url https://api.orq.ai/v2/gateway/completions \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"model": "<string>",
"prompt": "<string>",
"echo": false,
"frequency_penalty": 0,
"max_tokens": 16,
"presence_penalty": 0,
"seed": 123,
"stop": "<string>",
"temperature": 1,
"top_p": 1,
"user": "<string>",
"orq": {
"retry": {
"count": 3,
"on_codes": [
429,
500,
502
]
},
"fallbacks": [
{
"model": "openai/gpt-5"
},
{
"model": "anthropic/claude-4-opus"
}
],
"contact": {
"id": "contact_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"display_name": "Jane Doe",
"email": "[email protected]"
},
"thread": {
"id": "thread_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"tags": [
"customer-support"
]
},
"inputs": {
"customer_name": "John Smith",
"issue_type": "billing"
},
"cache": {
"ttl": 3600,
"type": "exact_match"
},
"knowledge_bases": [
{
"knowledge_id": "knowledge_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"top_k": 5
}
],
"timeout": {
"call_timeout": 30000
}
},
"stream": false
}
'{
"id": "<string>",
"choices": [
{
"finish_reason": "stop",
"index": 123,
"text": "<string>"
}
],
"model": "<string>",
"object": "<string>",
"created": "<string>",
"system_fingerprint": "<string>",
"usage": {
"completion_tokens": 123,
"prompt_tokens": 123,
"total_tokens": 123,
"prompt_tokens_details": {
"cached_tokens": 123,
"cache_creation_tokens": 123,
"audio_tokens": 123
},
"completion_tokens_details": {
"reasoning_tokens": 123,
"accepted_prediction_tokens": 123,
"rejected_prediction_tokens": 123,
"audio_tokens": 123
}
}
}For sending requests to legacy completion models
curl --request POST \
--url https://api.orq.ai/v2/gateway/completions \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"model": "<string>",
"prompt": "<string>",
"echo": false,
"frequency_penalty": 0,
"max_tokens": 16,
"presence_penalty": 0,
"seed": 123,
"stop": "<string>",
"temperature": 1,
"top_p": 1,
"user": "<string>",
"orq": {
"retry": {
"count": 3,
"on_codes": [
429,
500,
502
]
},
"fallbacks": [
{
"model": "openai/gpt-5"
},
{
"model": "anthropic/claude-4-opus"
}
],
"contact": {
"id": "contact_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"display_name": "Jane Doe",
"email": "[email protected]"
},
"thread": {
"id": "thread_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"tags": [
"customer-support"
]
},
"inputs": {
"customer_name": "John Smith",
"issue_type": "billing"
},
"cache": {
"ttl": 3600,
"type": "exact_match"
},
"knowledge_bases": [
{
"knowledge_id": "knowledge_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"top_k": 5
}
],
"timeout": {
"call_timeout": 30000
}
},
"stream": false
}
'{
"id": "<string>",
"choices": [
{
"finish_reason": "stop",
"index": 123,
"text": "<string>"
}
],
"model": "<string>",
"object": "<string>",
"created": "<string>",
"system_fingerprint": "<string>",
"usage": {
"completion_tokens": 123,
"prompt_tokens": 123,
"total_tokens": 123,
"prompt_tokens_details": {
"cached_tokens": 123,
"cache_creation_tokens": 123,
"audio_tokens": 123
},
"completion_tokens_details": {
"reasoning_tokens": 123,
"accepted_prediction_tokens": 123,
"rejected_prediction_tokens": 123,
"audio_tokens": 123
}
}
}Bearer authentication header of the form Bearer <token>, where <token> is your auth token.
ID of the model to use
The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
Echo back the prompt in addition to the completion
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
The maximum number of tokens that can be generated in the completion.
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
-2 <= x <= 2If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result.
Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
Leverage Orq's intelligent routing capabilities to enhance your AI application with enterprise-grade reliability and observability. Orq provides automatic request management including retries on failures, model fallbacks for high availability, contact-level analytics tracking, conversation threading, and dynamic prompt templating with variable substitution.
Show child attributes
{
"retry": { "count": 3, "on_codes": [429, 500, 502] },
"fallbacks": [
{ "model": "openai/gpt-5" },
{ "model": "anthropic/claude-4-opus" }
],
"contact": {
"id": "contact_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"display_name": "Jane Doe",
"email": "[email protected]"
},
"thread": {
"id": "thread_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"tags": ["customer-support"]
},
"inputs": {
"customer_name": "John Smith",
"issue_type": "billing"
},
"cache": { "ttl": 3600, "type": "exact_match" },
"knowledge_bases": [
{
"knowledge_id": "knowledge_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"top_k": 5
}
],
"timeout": { "call_timeout": 30000 }
}
Represents a completion response from the API.
A unique identifier for the completion.
The list of completion choices the model generated for the input prompt.
Show child attributes
The model used for the chat completion.
The object type
The Unix timestamp (in seconds) of when the chat completion was created.
This fingerprint represents the backend configuration that the model runs with.
Usage statistics for the completion request.
Show child attributes
Was this page helpful?