curl --request POST \
--url https://api.orq.ai/v2/gateway/embeddings \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"input": "<string>",
"model": "<string>",
"encoding_format": "float",
"dimensions": 123,
"user": "<string>",
"orq": {
"name": "<string>",
"fallbacks": [
{
"model": "openai/gpt-4o-mini"
}
],
"cache": {
"type": "exact_match",
"ttl": 3600
},
"retry": {
"count": 3,
"on_codes": [
429,
500,
502,
503,
504
]
},
"contact": {
"id": "contact_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"display_name": "Jane Doe",
"email": "[email protected]",
"metadata": [
{
"department": "Engineering",
"role": "Senior Developer"
}
],
"logo_url": "https://example.com/avatars/jane-doe.jpg",
"tags": [
"hr",
"engineering"
]
},
"load_balancer": [
{
"model": "openai/gpt-4o",
"weight": 0.7
},
{
"model": "anthropic/claude-3-5-sonnet",
"weight": 0.3
}
],
"timeout": {
"call_timeout": 30000
}
}
}
'{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
123
],
"index": 123
}
],
"model": "<string>",
"usage": {
"prompt_tokens": 123,
"total_tokens": 123
}
}Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
curl --request POST \
--url https://api.orq.ai/v2/gateway/embeddings \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '
{
"input": "<string>",
"model": "<string>",
"encoding_format": "float",
"dimensions": 123,
"user": "<string>",
"orq": {
"name": "<string>",
"fallbacks": [
{
"model": "openai/gpt-4o-mini"
}
],
"cache": {
"type": "exact_match",
"ttl": 3600
},
"retry": {
"count": 3,
"on_codes": [
429,
500,
502,
503,
504
]
},
"contact": {
"id": "contact_01ARZ3NDEKTSV4RRFFQ69G5FAV",
"display_name": "Jane Doe",
"email": "[email protected]",
"metadata": [
{
"department": "Engineering",
"role": "Senior Developer"
}
],
"logo_url": "https://example.com/avatars/jane-doe.jpg",
"tags": [
"hr",
"engineering"
]
},
"load_balancer": [
{
"model": "openai/gpt-4o",
"weight": 0.7
},
{
"model": "anthropic/claude-3-5-sonnet",
"weight": 0.3
}
],
"timeout": {
"call_timeout": 30000
}
}
}
'{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
123
],
"index": 123
}
],
"model": "<string>",
"usage": {
"prompt_tokens": 123,
"total_tokens": 123
}
}Bearer authentication header of the form Bearer <token>, where <token> is your auth token.
input
Input text to embed, encoded as a string or array of tokens.
ID of the model to use
Type of the document element
base64, float The number of dimensions the resulting output embeddings should have.
A unique identifier representing your end-user
Show child attributes
The name to display on the trace. If not specified, the default system name will be used.
Retry configuration for the request
Information about the contact making the request. If the contact does not exist, it will be created automatically.
Show child attributes
Unique identifier for the contact
"contact_01ARZ3NDEKTSV4RRFFQ69G5FAV"
Display name of the contact
"Jane Doe"
Email address of the contact
URL to the contact's avatar or logo
"https://example.com/avatars/jane-doe.jpg"
A list of tags associated with the contact
["hr", "engineering"]Array of models with weights for load balancing requests
[
{ "model": "openai/gpt-4o", "weight": 0.7 },
{
"model": "anthropic/claude-3-5-sonnet",
"weight": 0.3
}
]Returns the embedding vector.
list Show child attributes
ID of the model to used.
Was this page helpful?