# Initialize the outputs list
outputs = []
# Iterate through each row in the DataFrame
for _, row in df.iterrows():
    # Extract the 'instruction' and 'input' columns for each row
    instruction = row["instruction"]
    table = row["input"]
    
    # Invoke the deployment for each row
    generation = client.deployments.invoke(
        key="text_to_SQL",  # Replace with your actual deployment key
        context={
            "environments": []
        },
        inputs={
            "table": table,
            "instruction": instruction
        },
        metadata={
            "custom-field-name": "custom-metadata-value"
        }
    )
    
    # Append the model's output to the outputs list
    outputs.append(generation.choices[0].message.content)
# Add the outputs as a new column in the DataFrame
df["output"] = outputs